15-18 October 2024 ESA/ESTEC, Noordwijk, The Netherlands

Kensuke Shiba⁽¹⁾ and Koichi Suzuki⁽¹⁾

⁽¹⁾ Japan Aerospace Exploration Agency (JAXA) Safety & Mission Assurance department Email: shiba.kensuke@jaxa.jp

INTRODUCTION

In the present day, there are 121 models of passive and active components in Japan which meet the requirement of space components. They are qualified as JAXA qualified components by JAXA. Some of JAXA qualified components which have been gone through the review by ESA and met the criteria are included in the European Preferred Parts List (EPPL). These components contribute to the realization of rockets and space satellites, including commercial and government satellites. In recent years, the satellites which require lower cost and have shorter lifetime, called "New Space" satellites, are rapidly increasing. Although the high quality and high-cost components may not be required for such new space satellites, we believe the needs for space satellites are becoming polarized. The satellites will become larger as the space missions become more complex and more difficult. Such satellites should be accepting even fewer failures than the current satellites. Therefore, high-spec and high-quality components will be required even more.

In addition to the components which are qualified for space use, Commercial Off-The-Shelf (COTS) components, especially for automotive or industrial, are expected to apply to the latest space applications due to its advantage of performance and cost. However, since COTS components do not conform to space standards, COTS components must be evaluated according to the reliability and quality assurance requirements. Currently, JAXA does not have the latest passive COTS component evaluation guidelines. Therefore, we have started a space tolerance evaluation activity to prepare the evaluation guidelines for space use of passive COTS components.

In this paper, we show the JAXA qualified passive components and the evaluation activity for the tolerance to the space environment of the passive COTS components.

Note that what they call "component" in Europe is called "part" in Japan ("Component" indicates "subsystem" in Japan). However, in this paper "component" is used for the same meaning as "part."

JAXA QUALIFIED PASSIVE COMPONENTS

There is a total of 121 models of JAXA qualified components, of which 104 models are passive components. Note that the PCBs and materials such as thermal control films are also included in JAXA qualified components. A list of JAXA qualified passive components and EPPL listed components are shown in Table 1.

Comp. family	Description	Detail	Manufacturer
		spec.	
Capacitors	MLCC EPPL	$\frac{3}{2}$ (*1)	<u>Murata</u>
	Chip, Solid, Electrolytic, Tantalum EPPL	<u>1</u>	<u>Matsuo Electric</u>
Resistors	Chip, Thick Film EPPL	1	<u>Tateyama Kagaku</u>
	Wire-Wound (Power Type)	2	Hokuriku Electric
	Film	2	Seiden Techno
	Networks, Film	1	Sanada KOA
	<u>Chip, Thin Film</u> EPPL	3	Sanada KOA
		1	Sanada KOA
		<u>1</u>	<u>Sanada KOA</u>
Thermistors	Chip, Negative Temperature Coefficient EPPI	<u>1</u>	<u>Tateyama Kagaku</u>
	Lead, Negative Temperature Coefficient EPPI	<u>1</u>	<u>Tateyama Kagaku</u>
Fuses	Subminiature, Current-Limiting EPPL	<u>1</u>	<u>Tateyama Kagaku</u>
	Surface Mount, Miniature, Current-	<u>1</u>	<u>Tateyama Kagaku</u>
	Limiting EPPL		
Temp. Sensors	Platinum FPPL	<u>3</u>	<u>MHI</u> ^(*2)
Oso Crustala	Quanta Crustal Unita	2	Nihon Domno Kogyo
Osc. Crystais	Crystal Controlled Oscillators	3	Nihon Dempa Kogyo
Transformers	Power	2	Tamura
and Inductors	1 Uwer Others	6	Tamura Tamura
Wires and	Differential Transmission Cables	2	Tamura
Cables	Differential Transmission Cables EPPL	<u> </u>	JUIKOSIIA
Connectors	Rectangular Miniature	1	. IAE ^(*3)
connectors	Rectangular, similature	1	Nihon Maruko
	Rectangular, Miniature, High Density	1	JAE ^(*3)
		1	Nihon Maruko
	Rectangular, Microminiature	1	ITT Cannon
		1	Nihon Maruko
	Rectangular Miniature Mixed	1	Nihon Maruko
	Coaxial, RF	3	Waka Manufacturing
Printed Wiring	Fine Pitch Printed Wiring Boards, Glass	1	EIGHT KOUGYO
Boards	Base Woven Epoxy Resin Base Material	1	СМК
		1	OKI Circuit Technology
	Fine Pitch Printed Wiring Boards, Glass	1	OKI Circuit Technology
	Base Woven Polyimide Resin or Glass Base		
	woven Epoxy Resin Base Material		
	Elovible Delvimide Film Rese Material	1	OKI Circuit Technology
	Flexible, I oryinitide Film Dase Wraterial	1	OKI Chicult Technology
	Rigid-Flexible	1	OKI Circuit Technology
		-	
	Glass Base Woven Polyimide Resin or Glass	1	OKI Circuit Technology
	Base Woven Epoxy Resin Base Material		
	CIC Controlled Thermal Expansion, Glass		
	Base Woven Polyimide Resin Base Material	1	OKI Circuit Technology
	A A De d	1	
	Area Array Packaging	1	OKI Circuit Technology
	For High-speed Signals	1	OKI Circuit Technology
	ror mgn-specu signals	1	OKI UITUIT I CHIHOlogy

Table 1. List of 571211 quanned passive components
--

(*1) NASDA2040/L104(X7R)type and JAXA2040/M105(X7R) type only (*2) MHI = Mitsubishi Heavy Industries (*3) JAE = Japan Aviation Electronics Industry

As of July 2024, there are 14 passive component manufacturers whose abilities to manufacture the products to satisfy the requirements for space application defined by JAXA. In Table 1, components indicated in red are currently listed in EPPL. These components can be used for European space mission because their quality and the reliability have been already verified. Recently, JAXA-qualified rectangular microminiature connectors were included in the EPPL in January 2022. More information about JAXA qualified components can be found in the JAXA EEE parts database [1]. The detail specifications and the applicable documents for all JAXA qualified components are available therein.

COMPARISON OF JAXA/ESCC QUALIFICATION TEST SPECIFICATION OF THE PASSIVE COTS **COMPONENTS**

JAXA qualified components are examined in the qualification test which are described in the generic and detail specification documents. As described in last SPCD presentation [2], there are three kinds of specification documents in JAXA; General / basic specification called "JAXA-QTS-2000 [3]" defines basic requirements that are common for all component families. The generic specification defines common requirements for each component family. Detail requirements for each component family are defined in its detail specification. It has been verified that JAXA qualification system based on the above documents is similar to the ESCC (European Space Components Coordination) qualification system in the previous JAXA-ESA cooperation framework. The summary of the comparison results is shown in Table 2. The document tree of JAXA qualification system compared with that of ESCC qualification system is shown in Fig.1.

Table 2. Summary of JAXA and ESA qualified system comparison results			
System	JAXA	ESCC	
Basic document	JAXA-QTS-2000	-ESCC 20100 (component qualification)	
		-ESCC 25400 (technology flow)	
Subject	Manufacturing line	-Components (component qualification)	
		-Manufacturing technology (technology flow)	
Duration	3 years	2 years	
Manufacturing line	Commercial lines may be used	Same as JAXA-QML system	
Change control of	Decision is made by TRB (Technology	-Review and approved by ESCC (component qualification)	
QA program	Review Board)	-Same as JAXA-QML system (technology flow)	
Test optimization	Decision is made by TRB	-Restricted. Review / approval required by ESCC	
	Change must be described in the detail	(component qualification)	
	specification with rationale	-Same as JAXA-QML system (technology flow)	

T 11 0 0	C T A 37 A	1 0 4	1.6.1		•	1.
Lable 2 Summar	VOTIAXA	and ESA	dualified s	vstem com	parison res	lilts
Tuore 2. Summan	,		quantitie	jotenn com	pan 10011 100	CALCO .

Fig. 1. Document tree of JAXA qualification system and ESCC qualification system

One major difference between the qualification system of JAXA and ESCC is that the basic requirements that are common for all component families are defined in one document (general specification (JAXA-QTS-2000)) [3] in JAXA qualification system. Another difference is that JAXA doesn't have its own specifications for test methods. The common requirements for each component family are defined in a generic specification. Detail requirements for each component are defined in its detail specification. Approval procedure for component qualification is defined in JAXA inhouse documents. All the specifications are available through JAXA EEE parts database [1]. Duration of the certification is also different between JAXA/ESCC qualification systems. The certification is valid for 3 years in JAXA qualification system whereas it is valid for 2 years in ESCC system. There is no other major difference when compared JAXA system with ESCC system.

Same comparison activity has been performing among the specification of DLA (Defence Logistics Agency) and the specification of JAXA and ESCC. Although there are some differences that come from the different background ideas, the equivalence was confirmed among the specification of DLA, ESCC and JAXA QTS.

EVALUATION OF COTS COMPONENTS FOR TOLERANCE TO SPACE ENVIRONMENT

Commercial Off-The-Shelf (COTS) components, especially for automotive or industrial, are expected to apply to the latest space applications due to its advantage of performance and cost. However, since COTS components don't conform to space standards, COTS components must be evaluated according to the reliability and quality assurance requirements. Currently, JAXA does not have the latest passive COTS component evaluation guidelines. Therefore, in order to prepare the evaluation guidelines for space use of passive COTS components such as polymer tantalum capacitor, solid-state battery and stacked metallized film chip capacitor, voltage-controlled crystal oscillator, we have started evaluation activity for tolerance to space environment. We presented the results of the DPA tests we conducted on these parts at the SPCD2022.We conducted TID tests, mechanical stress tests and thermal environment tests to evaluate the concerns we identified based on the internal structure and materials used in these components. Here, we will introduce the results of the environmental tests.

Samples under tests

To evaluate the tolerance to the space environment of passive COTS components such as polymer tantalum capacitor, voltage-controlled crystal oscillator, solid-state battery and stacked metallized film chip capacitor, we prepared one product from each part type. The specifications of the parts are shown in Table 3.

Part type	Manufacture	Characteristic	Sample size
Polymer tantalum capacitor	Manufacture A	-Rated voltage: 10V	3ea
		-Nominal capacitance: 150µF	
		-Operating temperature range: - $55^{\circ}C \sim +105^{\circ}C$	
Stacked metallized film chip capacitor	Manufacture C	-Rated voltage: 100V	3ea
1 1		-Nominal capacitance: 0.018µF	
		-Capacitance tolerance: $\pm 10\%$	
		-Operating temperature range: - $55^{\circ}C \sim +125^{\circ}C$	
Voltage-controlled crystal oscillator	Manufacture D	-Nominal frequency: 100, 122.8, 125MHz	3ea
e ,		-Rated voltage: 3.3V	
		-Operating temperature range: $0^{\circ}C \sim +70^{\circ}C$, $-40^{\circ}C \sim +85^{\circ}C$	
Solid-state battery	Manufacture B	-Rated voltage: 1.5V	3ea
2		-Capacity: 100µAh	
		-Dimensions (L×W×H mm): 4.4 x 3.0 x 1.1 mm	
		-Operating temperature range: - $20^{\circ}C \sim +80^{\circ}C$	

Table 3. The specifications of the components

The thermal environment tests, the mechanical stress tests, and the TID tests were performed on the components shown in Table 3. The results are shown below.

The result of TID tests

We conducted TID tests under the test conditions shown in Table 4. The test facility was the National Institutes for Quantum Science and Technology, the radiation source was cobalt 60, and the dose rate was set at approximately 20k rads(Si)/hour.

Table 4. TID tests conditions			
Part type	Conditions	Characteristic evaluation items	Criteria
Polymer tantalum capacitor	-Source: Cobalt 60 -Dose Rate: approximately 20k rads (Si) /hour -Dose: 100k rads (Si)	-Capacitance (Cap.) -Dissipation factor (tanδ) -leakage current	-Capacitance: within ±10% of initial value -Dissipation factor: 0.15 or less -leakage current: 450µA or less
Stacked metallized film chip capacitor	-Characterization: Pre-irradiation, 0.1, 0.3, 0.5, 1.0 (Si) [kGy] -Bias of during irradiation	-Capacitance (Cap.) -Dissipation factor (tanδ) -Insulation resistance (IR)	-Capacitance: within ±5% of initial value -Dissipation factor: 0.012 or less - Insulation resistance: 1000MΩ or more
Voltage-controlled crystal oscillator		-Output frequency -Current consumption	-Output Frequency (Δf/f): ±50 ppm -Current consumption: Maximum 2x the nominal value
Solid-state battery	-Source: Cobalt 60 -Dose Rate: approximately 20k rads (Si) /hour -Dose: 100k rads (Si) -Characterization: Pre-irradiation, 1.0 (Si) [kGy] -Bias of during irradiation	-discharge capacity	-discharge capacity: N/A(Charge/discharge characteristic data acquisition only)

a) Polymer tantalum capacitor

The results of the electrical characteristic measurements after the TID test on the polymer tantalum capacitor are shown in Fig. 2.

Regarding the capacitance measurement result, it was confirmed that there were no abnormalities as the maximum change was 1.61% compared to the judgment criteria of $\pm 10\%$ change rate from the initial value.

Regarding the dissipation factor measurement result, it was confirmed that there were no abnormalities as the maximum value was 0.04176, compared to the judgment criteria of 0.15 or less.

Regarding the leakage current measurement result, it was confirmed that there were no abnormalities as the maximum value was 5.9µA, compared to the judgment criteria of 450µA or less.

No significant changes or abnormalities in electrical characteristics due to irradiation were observed.

0.600

Dose [krads (Si)]

0.400

0.800

1.000

1.200

The results of the external visual examination after irradiation are shown in Fig. 3. No significant changes or abnormalities were observed.

0.200

5.0000 0.0000

0.000

Fig. 3. the results of the external visual examination after irradiation on the polymer tantalum capacitor

b) Stacked metallized film chip capacitor

The results of the electrical characteristic measurements after the TID test on the stacked metallized film chip capacitor are shown in Fig. 4.

Regarding the capacitance measurement result, it was confirmed that there were no abnormalities as the maximum change was -0.21% compared to the judgment criteria of $\pm 5\%$ change rate from the initial value.

Regarding the dissipation factor measurement result, it was confirmed that there were no abnormalities as the maximum value was 0.0422, compared to the judgment criteria of 0.12 or less.

Regarding the insulation resistance measurement result, it was confirmed that there were no abnormalities as the minimum value was $61,000M\Omega$, compared to the judgment criteria of $1,000M\Omega$ or more.

No significant changes or abnormalities in electrical characteristics due to irradiation were observed.

Fig. 4. The results of the electrical characteristic measurements after the TID test on the stacked metallized film chip capacitor

The results of the external visual examination after the TID test are shown in Fig. 5. No significant changes or abnormalities were observed.

Fig. 5. The result of external visual examination after the TID test on the stacked metallized film chip capacitor

c) Voltage-controlled crystal oscillator

The results of the electrical characteristic measurements after the TID test on the voltage-controlled crystal oscillator are shown in Fig. 6.

Regarding the output frequency measurement result, it was confirmed that there were no abnormalities as the maximum change was 166Hz compared to the judgment criteria of 122.88MHz±6.144kHz.

No significant changes or abnormalities in electrical characteristics due to irradiation were observed.

Fig. 6. The results of the electrical characteristic measurements after the TID test on the voltage-controlled crystal oscillator

The results of the external visual examination after the TID test are shown in Fig. 7. No significant changes or abnormalities were observed.

Fig. 7. The result of external visual examination after the TID test on the voltage-controlled crystal oscillator

d) Solid-state battery

The result of the electrical characteristic measurements after the TID test on the solid-state battery is shown in Fig. 8. Regarding the capacitance measurement result, it was confirmed that there were no significant changes.

Fig. 8. The result of the electrical characteristic measurements after the TID test on the solid-state battery

The results of the external visual examination after the TID test are shown in Fig. 9.

During charging and discharging before irradiation, discoloration (brown) was confirmed in the negative electrode. The browned area is indicated by the yellow arrow in the figure.

Fig. 9. The result of external visual examination after the TID test on solid-state battery

The result of mechanical stress tests

We conducted the mechanical stress tests under the test conditions shown in Table 5(Vibration tests) and Table 6(Shock tests).

Part type	Conditions	Characteristic	Criteria
Polymer tantalum capacitor	-Test method: MIL-STD-202, TM214 -Test condition: condition II, H (34.02Grms) -Frequency: 50Hz ~ 2,000Hz	-Capacitance (Cap.) -Dissipation factor (tanδ) -leakage current	-Capacitance: within ±10% of initial value -Dissipation factor: 0.15 or less -leakage current: 450µA or less
Stacked metallized film chip capacitor	-Test time: 3 minutes for each on 3 axes, 9 minutes in total. -Characterization: Pre, Post-Vibration, Post-Shock	-Capacitance (Cap.) -Dissipation factor (tanδ) -Insulation resistance (IR)	-Capacitance: within ±3% of initial value -Dissipation factor: 0.011 or less - Insulation resistance: 3000MΩ or more
Solid-state battery		-discharge capacity	-discharge capacity: N/A (Charge/discharge characteristic data acquisition only)
Voltage-controlled crystal oscillator	-Test method: MIL-STD-883, TM2007 -Test condition: condition A (20G) -Frequency: 20Hz ~ 2,000Hz -Test time: 4 minutes for each on 3 axes, 4 times, 48 minutes in total. -Characterization: Pre, Post-Vibration, Post-Shock	-Output frequency -Current consumption	-Output Frequency (Δf/f): ±50 ppm -Current consumption: Maximum 2x the nominal value

Table 5. Vibration tests conditions	Table 5.	Vibration tes	sts conditions
-------------------------------------	----------	---------------	----------------

Table 6. Shock tests conditions

Part type	Conditions	Characteristic	Criteria
. –		evaluation items	
Polymer tantalum	-Test method: MIL-STD-202, TM213	-Capacitance (Cap.)	-Capacitance: within $\pm 10\%$ of initial value
capacitor	-Test condition: condition C (100G)	-Dissipation factor (tanδ)	-Dissipation factor: 0.15 or less
1	-Duration of pulse: 6 msec	-leakage current	-leakage current: 450µA or less
Stacked metallized	-Waveform: Half-sine shock pulse	-Capacitance (Cap.)	-Capacitance: within $\pm 5\%$ of initial value
film chip capacitor	-Characterization: Pre, Post-Vibration, Post-Shock	-Dissipation factor (tanδ)	-Dissipation factor: 0.012 or less
1 1		-Insulation resistance (IR)	- Insulation resistance: $1000M\Omega$ or more
Solid-state battery		-discharge capacity	-discharge capacity: N/A (Charge/discharge
•			characteristic data acquisition only)
Voltage-controlled	-Test method: MIL-STD-883, TM2007	-Output frequency	-Output Frequency ($\Delta f/f$): ± 50 ppm
crystal oscillator	-Test condition: condition A (20G)	-Current consumption	-Current consumption: Maximum 2x the nominal
5	-Frequency: 20Hz ~ 2,000Hz	_	value
	-Test time: 4 minutes for each on 3 axes, 4 times,		
	48 minutes in total.		
	-Characterization: Pre, Post-Vibration, Post-Shock		

a) Polymer tantalum capacitor

1) Vibration tests and Shock tests

The results of the electrical characteristic measurements after the vibration test and shock test on the polymer tantalum capacitor are shown in Fig. 10.

Regarding the capacitance measurement result, it was confirmed that there were no abnormalities as after the vibration test the maximum change was 3.57% compared to the judgment criteria of $\pm 10\%$ change rate from the initial value, and also as after the shock test the maximum change was 3.57% compared to the judgment criteria of $\pm 10\%$ change rate from the initial value.

Regarding the dissipation factor measurement result, it was confirmed that there were no abnormalities as after the vibration test the maximum change was 0.0343 compared to the judgment criteria of 0.15 or less, and also as after the shock test the maximum change was 0.0343 compared to the judgment criteria of 0.15 or less.

Regarding the leakage current measurement result, it was confirmed that there were no abnormalities as after the vibration test and the shock test the maximum value was $5.26\mu A$, compared to the judgment criteria of $450\mu A$ or less.

No significant changes or abnormalities in electrical characteristics due to vibration and shock were observed.

Fig. 10. The results of the electrical characteristic measurements after the vibration test and shock test on the polymer tantalum capacitor

The results of the external visual examination after the vibration test and the shock test are shown in Fig. 11. No significant changes or abnormalities were observed.

Fig. 11. The results of the external visual examination after the vibration test and the shock test on polymer tantalum capacitor

b) Stacked metallized film chip capacitor

The results of the electrical characteristic measurements after the vibration test and Shock test on the stacked metallized film chip capacitor are shown in Fig. 12.

Regarding the capacitance measurement result, it was confirmed that there were no abnormalities as the maximum change was -0.21% compared to the judgment criteria of $\pm 3\%$ change rate from the initial value.

Regarding the dissipation factor measurement result, it was confirmed that there were no abnormalities as the maximum value was 0.0422, compared to the judgment criteria of 0.12 or less.

Regarding the insulation resistance measurement result, it was confirmed that there were no abnormalities as the minimum value was $61,000M\Omega$, compared to the judgment criteria of $1,000M\Omega$ or more.

No significant changes or abnormalities in electrical characteristics due to vibration and shock were observed.

Fig. 12. The results of the electrical characteristic measurements after the vibration test and Shock test on the stacked metallized film chip capacitor

The results of the external visual examination after the vibration test and shock test are shown in Fig. 13. No significant changes or abnormalities were observed.

Fig. 13. The results of the external visual examination after the vibration test and shock test on the stacked metallized film chip capacitor

c) Voltage-controlled crystal oscillator

The results of the electrical characteristic measurements after the vibration test and shock test on the voltagecontrolled crystal oscillator are shown in Fig. 14. Regarding the output frequency measurement result, it was confirmed that there were no abnormalities as the maximum change was 137Hz compared to the judgment criteria of 122.88MHz±6.144kHz.

No significant changes or abnormalities in electrical characteristics due to vibration and shock were observed.

Fig. 14. The results of the electrical characteristic measurements after the vibration test and Shock test on the voltage-controlled crystal oscillator

The results of the external visual examination after the vibration test and the shock test are shown in Fig. 15. No significant changes or abnormalities were observed.

Fig. 15. The results of the external visual examination after the vibration test and the shock test on the voltagecontrolled crystal oscillator

d) Solid-state battery

The result of the electrical characteristic measurements after the vibration test and shock test on the solid-state battery is shown in Fig. 16.

Solid state battery (Capacitance) 160 140 120 Capacitance [uF] 100 80 c/n5 60 s/n6 40 20 0 Post-Vibration Pre Post-Shock

Regarding the capacitance measurement result, it was confirmed that there were no significant changes.

Fig. 16. The results of the mechanical stress tests on the solid-state battery

The results of the external visual examination after the vibration test and the shock test are shown in Fig. 17. During charging and discharging before the vibration test, discoloration (brown) was confirmed in the negative electrode. The browned area is indicated by the yellow arrow and the crack area is indicated by the red arrow in the figure. Also, a close-up image of the area where cracks occurred in the S/N6 sample after the shock test is shown in Figure 18. Cracks occurred throughout the electrodes and the body.

Fig. 17. The results of the external visual examination after the vibration test and the shock test on solid-state battery

Fig. 18. Enlarged image of the solid-state battery sample(S/N:6) after shock test

The result of thermal environment tests

We conducted thermal environment tests under the test conditions shown in Table 7(Thermal shock tests) and Table 8(Ion migration tests).

Part type	Conditions	Characteristic	Criteria
		evaluation items	
Polymer tantalum	-Test method: MIL-STD-202, TM107	-Capacitance (Cap.)	-Capacitance: within $\pm 10\%$ of initial value
capacitor	-Test cycles:	-Dissipation factor (tanδ)	-Dissipation factor: 0.15 or less
1	$-40^{\circ}C(30\min) \rightarrow R.T.(5\min) \rightarrow +100^{\circ}C(30\min), 1000cycles$	-leakage current	-leakage current: 450µA or less
Stacked metallized	-Characterization: Pre, 100, 300, 500, 1000cycles	-Capacitance (Cap.)	-Capacitance: within $\pm 5\%$ of initial value
film chip capacitor		-Dissipation factor (tanδ)	-Dissipation factor: 0.012 or less
1 1		-Insulation resistance (IR)	- Insulation resistance: $1500M\Omega$ or more
Solid-state battery	-Test method: MIL-STD-202, TM107	-discharge capacity	-discharge capacity: N/A(Charge/discharge
	-Test cycles:		characteristic data acquisition only)
	$-20^{\circ}C(30\min) \rightarrow R.T.(5\min) \rightarrow +80^{\circ}C(30\min), 1000cycles$		
	-Characterization: Pre, 100, 300, 500, 1000cycles		
Voltage-controlled	-Test method: MIL-STD-202, TM107	-Output frequency	-Output Frequency ($\Delta f/f$): ± 50 ppm
crystal oscillator	-Test cycles:	-Current consumption	-Current consumption: Maximum 2x the nominal
	$-40^{\circ}C(30\text{min}) \rightarrow \text{R.T.}(5\text{min}) \rightarrow +100^{\circ}C(30\text{min}), 1000\text{cycles}$		value
	-Characterization: Pre, 100, 300, 500, 1000cycles		

Table 8. Ion migration tests conditions

Part type	Conditions	Characteristic	Criteria
		evaluation items	
Polymer tantalum	-Temperature: +85°C	-Capacitance (Cap.)	-Capacitance: within $\pm 10\%$ of initial value
capacitor	-Test Time: 2000hours	-Dissipation factor (tanδ)	-Dissipation factor: 0.15 or less
1	-Vias: 10V(static)	-leakage current	-leakage current: 450µA or less
Stacked metallized	Characterization: Pre, 240, 500, 1000, 2000hours	-Capacitance (Cap.)	-Capacitance: within $\pm 5\%$ of initial value
film chip capacitor		-Dissipation factor (tanδ)	-Dissipation factor: 0.012 or less
1 1		-Insulation resistance (IR)	- Insulation resistance: $1000M\Omega$ or more
Solid-state battery	-Temperature: +80°C	-discharge capacity	-discharge capacity: N/A (Charge/discharge
	-Test Time: 2000hours		characteristic data acquisition only)
	-Vias: 100V(static)		
	Characterization: Pre, 240, 500, 1000, 2000hours		
Voltage-controlled	-Temperature: +85°C	-Output frequency	-Output Frequency ($\Delta f/f$): ± 50 ppm
crystal oscillator	-Test Time: 2000hours	-Current consumption	-Current consumption: Maximum 2x the nominal
5	-Vias: 2V, -1.3V(static)	_	value
	Characterization: Pre, 240, 500, 1000, 2000hours		

a) Polymer tantalum capacitor

1) Thermal shock tests

The results of the electrical characteristic measurements after the thermal shock test on the polymer tantalum capacitor are shown in Fig. 19.

Regarding the capacitance measurement result, it was confirmed that there were no abnormalities as the maximum change was 1.47% compared to the judgment criteria of $\pm 10\%$ change rate from the initial value.

Regarding the dissipation factor measurement result, it was confirmed that there were no abnormalities as the maximum value was 0.0361, compared to the judgment criteria of 0.15 or less.

Regarding the leakage current measurement result, it was confirmed that there were no abnormalities as the maximum value was 20μ A, compared to the judgment criteria of 450μ A or less.

No significant changes or abnormalities in electrical characteristics due to thermal shock were observed.

Fig. 19. The results of the electrical characteristic measurements after the thermal shock test on the polymer tantalum capacitor

The results of the external visual examination after the thermal shock test are shown in Fig. 20. No significant changes or abnormalities were observed.

Fig. 20. The results of the external visual examination after the thermal shock test on the polymer tantalum capacitor

2) Ion migration tests

The result of the ion migration test on the polymer tantalum capacitor are shown in Fig. 21.

For S/N 7, a temporary increase of 0.5 μ A was observed, but this did not result in ion migration. On the other hand, no significant fluctuations were observed for S/N 8 and 9, and no signs of the ion migration were observed.

Fig. 21. The result of the ion migration test on the polymer tantalum capacitor

The results of the electrical characteristic measurements after the ion migration test are shown in Fig. 22.

Regarding the capacitance measurement result, it was confirmed that there were no abnormalities as the maximum change was 2.35% compared to the judgment criteria of $\pm 10\%$ change rate from the initial value.

Regarding the dissipation factor measurement result, it was confirmed that there were no abnormalities as the maximum value was 0.04, compared to the judgment criteria of 0.15 or less.

Regarding the leakage current measurement result, it was confirmed that there were no abnormalities as the maximum value was 17.346µA, compared to the judgment criteria of 450µA or less.

No significant changes or abnormalities in electrical characteristics were observed.

Fig. 22. The results of the electrical characteristic measurements after the ion migration test on polymer tantalum capacitor

The results of the external visual examination after the ion migration test are shown in Fig. 23. No significant changes or abnormalities were observed.

Fig. 23. The results of the external visual examination after the ion migration test on the polymer tantalum capacitor

b) Stacked metallized film chip capacitor

1) Thermal shock tests

The results of the electrical characteristic measurements after the thermal shock test on the stacked metallized film chip capacitor are shown in Fig. 24.

Regarding the capacitance measurement result, it was confirmed that there were no abnormalities as the maximum change was 0.97% compared to the judgment criteria of $\pm 5\%$ change rate from the initial value.

Regarding the dissipation factor measurement result, it was confirmed that there were no abnormalities as the maximum value was 0.033, compared to the judgment criteria of 0.12 or less.

Regarding the insulation resistance measurement result, it was confirmed that there were no abnormalities as the minimum value was $1,000,000M\Omega$, compared to the judgment criteria of $1,500M\Omega$ or more.

Fig. 24. The results of the electrical characteristic measurements after the thermal shock test on the stacked metallized film chip capacitor

The results of the external visual examination after the thermal shock test are shown in Fig. 25. No significant changes or abnormalities were observed.

Fig. 25. The results of the external visual examination after the thermal shock test

2) Ion migration test

The results of the ion migration test on the stacked metallized film chip capacitor are shown in Fig. 26. No significant fluctuations were observed, and no signs of the ion migration were observed.

Fig. 26. The result of the ion migration test on stacked metallized film chip capacitor

The results of the electrical characteristic measurements after the ion migration test are shown in Fig. 27.

Regarding the capacitance measurement result, it was confirmed that there were no abnormalities as the maximum change was 1.88% compared to the judgment criteria of $\pm 5\%$ change rate from the initial value.

Regarding the dissipation factor measurement result, it was confirmed that there were no abnormalities as the maximum value was 0.00337, compared to the judgment criteria of 0.012 or less.

Regarding the insulation resistance measurement result, it was confirmed that there were no abnormalities as the minimum value was $1,750,000M\Omega$, compared to the judgment criteria of $1,000M\Omega$ or more.

No significant changes or abnormalities in electrical characteristics due to the ion migration were observed.

Fig. 27. The results of the electrical characteristic measurements after the ion migration test on stacked metallized film chip capacitor

The results of the external visual examination after the ion migration test are shown in Fig. 28. No significant changes or abnormalities were observed.

Fig. 28. The results of the external visual examination after the ion migration test on stacked metallized film chip capacitor

c) Voltage-controlled crystal oscillator

1) Thermal shock tests

The results of the electrical characteristic measurements after the thermal shock test on the voltage-controlled crystal oscillator are shown in Fig. 29.

No significant changes or abnormalities were observed.

Fig. 29. The results of the electrical characteristic measurements after the thermal shock test on the voltagecontrolled crystal oscillator

The results of the external visual examination after the thermal shock test are shown in Fig. 30. No significant changes or abnormalities were observed.

Fig. 30. The results of the external visual examination after the thermal shock test on voltage-controlled crystal oscillator

2) Ion migration tests

The results of the ion migration test on the voltage-controlled crystal oscillator are shown in Fig. 31. No significant fluctuations were observed, and no signs of the ion migration were observed.

Fig. 31. The results of the ion migration test on the voltage-controlled crystal oscillator

The results of the electrical characteristic measurements after the ion migration test on the voltage-controlled crystal oscillator are shown in Fig. 32.

No significant changes or abnormalities in electrical characteristics due to the ion migration were observed.

Fig. 32. The result of the electrical characteristic measurements after the ion migration test on voltagecontrolled crystal oscillator

The results of the external visual examination after the ion migration test are shown in Fig. 33. No significant changes or abnormalities were observed.

Fig. 33. The result of external visual examination after the ion migration test on voltage-controlled crystal oscillator

d) Solid-state battery

1) Thermal shock tests

The result of the electrical characteristic measurements after the thermal shock test on the solid-state battery is shown in Fig. 34.

Regarding the capacitance measurement result, after 300 cycles, the solid-state battery could no longer be charged or discharged, making it impossible to measure the capacitance.

Fig. 34. The result of the electrical characteristic measurements after the thermal shock test on the solid-state battery

The results of the external visual examination after the thermal shock test are shown in Fig. 35. During charging and discharging before the thermal shock test, discoloration (brown) was confirmed in the negative electrode of all samples. After 100 cycles, peeling occurred on the positive electrode. The browned area is indicated by the yellow arrow, the crack area is indicated by the red arrow and the peeling area is indicated by the blue arrow in the figure.

Fig. 35. The result of external visual examination after the thermal shock test on solid-state battery

2) Ion migration tests

The results of the ion migration test on the solid-state battery are shown in Fig. 36. No significant fluctuations were observed, and no signs of ion migration were observed.

Fig. 36. The result of the ion migration test on solid-state battery

The result of the electrical characteristic measurement after the ion migration test on the solid-state battery is shown in Fig. 37.

In the measurement after 2000 hours, the capacitance of all samples was below the nominal capacitance of 100 μ A, which was approximately 30% lower than the initial capacitance value.

Fig. 37. The result of the electrical characteristic measurements after the ion migration test on solid-state battery

The results of the external visual examination after the thermal shock test are shown in Fig. 38. During charging and discharging before the thermal shock test, discoloration (brown) was confirmed in the negative electrode of all samples. After 2000 hours, peeling occurred on the positive electrode. The browned area is indicated by the yellow arrow, the crack area is indicated by the red arrow and the peeling area is indicated by the blue arrow in the figure.

Fig. 38. The result of external visual examination after the ion migration test on solid-state battery

As a result of the TID tests, the mechanical stress tests, and the thermal environment tests on polymer tantalum capacitor, voltage-controlled crystal oscillator, and laminated metallized film chip capacitor, no abnormalities or failures were found under the test conditions implemented. We believe that they are suitable for use in space applications under the test conditions implemented.

On the other hand, for solid-state battery, discoloration occurred in the electrodes and cracks occurred in the electrodes and bodies due to charging and discharging before the application of stress, so we believe that they are unsuitable for use in spacecraft.

SUMMARY

An overview of JAXA qualified passive components and their qualification requirement was introduced. Currently there are 104 JAXA qualified passive components and 20 of them are listed in EPPL. Most of them are qualified using JAXA-QML system, which is similar to the technology flow qualification in ESCC system. The qualification system in JAXA is quite similar to that in ESCC and its general requirements are outlined in comparison with those in ESCC system. As the result of comparison, the qualification test requirements of JAXA qualification system are verified to be equivalent to that of ESCC system.

As a result of the TID tests, the mechanical stress tests, and the thermal environment tests on the four types of passive components mentioned above, it was found that the solid-state battery used in these tests are not suitable for use in space applications. In the future, we will conduct outgassing tests and whisker growth evaluations on the remaining three types of passive components and prepare evaluation guidelines for the use of passive COTS components in space applications.

REFERENCES

- [1] Database of JAXA qualified EEE Parts and Materials, https://ssl.tksc.jaxa.jp/eeepitnl/en/
- [2] N.Ikeda, K,Suzuki, "Introduction of JAXA qualified Passive Components and Their Qualification Requirement in Comparison with ESCC Qualification Requirement", 2nd Space Passive Component Days, 2016
- [3] JAXA-QTS-2000 Common Parts/Materials, Space Use, General specification for.